A fast direct solver for elliptic problems on general meshes in 2D
نویسندگان
چکیده
Article history: Received 7 December 2010 Received in revised form 26 September 2011 Accepted 11 October 2011 Available online 19 October 2011
منابع مشابه
A fast direct solver for elliptic problems on Cartesian meshes in 3D
We present a fast direct algorithm for solutions to linear systems arising from three dimensional elliptic equations. We follow the approach of Xia et al. (2009) on combining the multifrontal method with hierarchical matrices in two dimensions and extend it to three dimensional case. Linear time complexity is shown and a more practical variant with worse scaling is demonstrated.
متن کاملA Fast and Memory Efficient Sparse Solver with Applications to Finite-Element Matrices
In this article we introduce a fast iterative solver for sparse matrices arising from the finite element discretization of elliptic PDEs. The solver uses a fast direct multi-frontal solver as a preconditioner to a simple fixed point iterative scheme. This approach combines the advantages of direct and iterative schemes to arrive at a fast, robust and accurate solver. We will show that this solv...
متن کاملAn Efficient and High-Order Accurate Boundary Integral Solver for the Stokes Equations in Three Dimensional Complex Geometries
This dissertation presents an efficient and high-order boundary integral solver for the Stokes equations in complex 3D geometries. The targeted applications of this solver are the flow problems in domains involving moving boundaries. In such problems, traditional finite element methods involving 3D unstructured mesh generation experience difficulties. Our solver uses the indirect boundary integ...
متن کاملNon-overlapping Schwarz algorithm for solving 2D m-DDFV schemes
We propose a non-overlapping Schwarz algorithm for solving “Discrete Duality Finite Volume” schemes (DDFV for short) on general meshes. In order to handle this problem, the first step is to propose and study a convenient DDFV scheme for anisotropic elliptic problems with mixed Dirichlet/Fourier boundary conditions. Then, we are able to build the corresponding Schwarz algorithm and to prove its ...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 231 شماره
صفحات -
تاریخ انتشار 2012